Vanital Abstända und Minkal	
Kapitel Abstände und Winkel 1. Abstand Punkt Ebene geometrisch Den Abstand d zwischen einer Ebene E und einem Punkt P und den Lotfußpunkt geometrisch bestimmen können (244/1a)	 Gerade g bestimmen, die senkrecht zur Ebene E und durch den Punkt P verläuft Den Lotfußpunkt L als Schnittpunkt zwischen g und E bestimmen d = \overline{LP}
2. Punkte und Ebenen bei vorgegebenem Abstand a) Einen Punkt P bestimmen, der von einer Ebene E einen vorgegebenen Abstand d hat (244/2a) b) Zwei parallele Ebenen E ₁ und E ₂ bestimmen, die von einer gegebenen Ebene E einen gegebenen Abstand d haben (244/2b)	a) 1. einen Punkt Q auf der Ebene E wählen 2. Ortsvektor \vec{p} des gesuchten Punktes P bestimmen: $\vec{p} = \vec{q} + d \cdot \frac{\vec{n}}{ \vec{n} } = \vec{q} + d \cdot \overrightarrow{n_0}$ mit \vec{n} : Normalenvektor von E, $\overrightarrow{n_0} = \frac{\vec{n}}{ \vec{n} }$ Einheitsvektor \vec{q} : Ortsvektor von Q b) 1. Einen Punkt P ₁ bestimmen wie in a) beschrieben 2. Einen zweiten gegenüberliegenden Punkt P ₂ $\overrightarrow{p_2} = \vec{q} - d \cdot \overrightarrow{n_0}$ bestimmen 2. Ebenengleichungen E ₁ und E ₂ aufstellen, die parallel zu E sind und durch P ₁ bzw. P ₂ verlaufen
3. Abstand Punkt Ebene mit Hessischer Normalenform für Ebenen in Normalenform Den Abstand d zwischen einer Ebene E in Normalenform und einem Punkt R bestimmen können (244/1b)	$\mathbf{d} = (\vec{r} - \vec{p}) \cdot \vec{n_0} \text{ mit}$ $\vec{p} : \text{Stützvektor für einen bestimmten Punkt P der}$ Ebene $\vec{r} : \text{Ortsvektor des Punktes R}$ $\vec{n} : \text{Normalenvektor der Ebene}$ $\vec{n_0} = \frac{\vec{n}}{ \vec{n} } : \text{Einheitsvektor des Normalenvektors}$
4. Abstand Punkt Ebene mit Hessischer Normalenform für Ebenen in Koordinatenform Den Abstand d zwischen einer Ebene E in Koordinatenform und einem Punkt R bestimmen können (261/2a)	$d = \frac{\begin{vmatrix} r_1 \cdot n_1 + r_2 \cdot n_2 + r_3 \cdot n_3 - b \\ \sqrt{n_1^2 + n_2^2 + n_3^2} \end{vmatrix}$ wenn E die Form $x_1 \cdot n_1 + x_2 \cdot n_2 + x_3 \cdot n_3 = b$ und R die Koordinaten (r_1, r_2, r_3) hat.
5. Abstand Punkt Gerade Den Abstand zwischen einem Punkt P und einer Geraden g Gerade bestimmen können (248/1a)	1. Die Ebene senkrecht zu g, durch P bestimmen 2. Den Lotfußpunkt L als Schnittpunkt zwischen Ebene und Gerade bestimmen 3. d = $ \overrightarrow{LP} $
 6. Abstand windschiefer Geraden a) Den Abstand zwischen zweier windschiefen Geraden g₁ und g₂ bestimmen können b) die beiden Lotfußpunkte P und Q bestimmen, zwischen denen sich die kürzeste Entfernung befindet: die kürzeste Verbindung zwischen 2 windschiefen Geraden steht immer senkrecht auf den beiden Richtungsvektoren der Geraden (252/1a) 	zu a) 1. Die Ebene E bestimmen, die g_1 enthält und parallel zu g_2 ist (also den Richtungsvektor von g_2 in Geradengleichung von g_1 ergänzen) 2. Einen Punkt P auf g_2 auswählen 3. Den Abstand d zwischen P und E bestimmen zu b) 1. P(s) und Q(t) in Abh. der beiden Parameter s und t koordinatenweise ausdrücken 2. Den Verbindungsvektor $\overline{PQ(s,t)}$ bestimmen 3. Das Skalarprodukt aus je einem Richtungsvektor der Geraden mit $\overline{PQ(s,t)}$ muss 0 sein, dies liefert zwei Gleichungen, mit denen s und t bestimmt wird. 4. Durch Einsetzen der gefundenen Parameter in die Geradengleichungen erhält man P und Q
7. Abstände zwischen 2 parallelen Ebenen bzw. 2 parallelen Geraden a) Abstände zwischen 2 parallelen Ebenen E ₁ und E ₂ bestimmen können b) Abstände zwischen 2 parallelen Geraden g ₁ und g ₂ bestimmen können (248/3a)	a) wähle einen Punkt P auf E_1 und bestimme $d(P,E_2)$ b) wähle einen Punkt P auf g_1 und bestimme $d(P,g_2)$

8. Punkte auf einer Geraden mit vorgegebenen Abstand zu einer Ebene	Die Koordinaten eines Punktes P, der auf g liegt, in Abhängigkeit eines Parameters t angeben.
Punkte bestimmen, die von einer Ebene einen	2. Den Punkt P in Abhängigkeit des Parameters in die
gegebenen Abstand haben und gleichzeitig auf einer	hessische Normalenform (Nr. 4) einsetzen und mit
gegebenen Gerade g liegen (245/10 oder 244/5b)	dem gegebenen Abstand gleichsetzen.
	3. Die Gleichung nach t auflösen und zwei Werte für t
	bestimmen (Rechnen mit Betrag!)
	t-2 =4 heißt $t-2=4$ oder $t-2=-4$
	4. Die beiden Parameter t in die Geradengleichung
	einsetzen und zwei Punkte bestimmen
O Minimalan Abatand Turischan 2 Flugabiaktan	
9. Minimalen Abstand zwischen 2 Flugobjekten	1. P und Q in Abh. eines Parameters t ausdrücken
bestimmen	2. den Verbindungsvektor $\overline{PQ(t)}$ bestimmen
Die beiden Geradengleichungen können mit Hilfe des	3. $f(t) = \overrightarrow{PQ(t)} ^2$ bestimmen und davon das Minimum
gleichen Parameters geschrieben werden, der die Zeit	suchen $(f'(t) = 0, f''(t) < 0)$, Randwerte beachten
angibt (252/5).	
10. Schnittwinkel zwischen 2 Vektoren	$\cos \alpha = \frac{\overrightarrow{u_1} \cdot \overrightarrow{u_2}}{ \overrightarrow{u_1} \cdot \overrightarrow{u_2} } \text{mit} 0^\circ \le \alpha \le 180^\circ$
Den Schnittwinkel zwischen 2 Vektoren bestimmen	
können (193/1b und Abi).	$\overrightarrow{u_1}$, $\overrightarrow{u_2}$: Vektoren, die vom Scheitel des Winkels weg
	zeigen
11. Schnittwinkel zwischen 2 Geraden	$\cos \alpha = \frac{ \overrightarrow{u_1} \cdot \overrightarrow{u_2} }{ \overrightarrow{u_1} \cdot \overrightarrow{u_2} } \text{mit} 0^\circ \le \alpha \le 90^\circ$
Den Schnittwinkel zwischen 2 Geraden bestimmen	' 1'' 2'
können (255/1a).	$\overrightarrow{u_1}$, $\overrightarrow{u_2}$: Richtungsvektoren der Gerden
12. Schnittwinkel zwischen 2 Ebenen	$\cos \alpha = \frac{ \overrightarrow{n_1} \cdot \overrightarrow{n_2} }{ \overrightarrow{n_1} \cdot \overrightarrow{n_2} } \text{mit} 0^\circ \le \alpha \le 90^\circ$
Den Schnittwinkel zwischen 2 Ebenen bestimmen	$\cos \alpha = \frac{1}{ \vec{n_1} \cdot \vec{n_2} } \text{filt} 0 \le \alpha \le 90$
können (255/2b).	
Komien (233) 23).	
13. Schnittwinkel zwischen Ebene und Gerade	$ \overrightarrow{u_1}, \overrightarrow{n_1} $ $ \overrightarrow{u_1}, \overrightarrow{n_1} $
Einheitsvektoren bestimmen können und deren	$\sin \alpha = \frac{ \overrightarrow{u_1} \cdot \overrightarrow{n_1} }{ \overrightarrow{u_1} \cdot \overrightarrow{n_1} } \text{mit} 0^\circ \le \alpha \le 90^\circ$
Bedeutung kennen (256/3a)	$ \overrightarrow{u_1}$, $ \overrightarrow{n_1} $: Richtungsvektor der Gerade und
Bedeutung kennen (250/58)	Normalenvektor der Ebene
14. Fläche eines Dreiecks	a) $A = \frac{1}{2} \cdot g \cdot h$, wobei $g \perp h$
a) Fläche eines rechtwinkligen Dreiecks berechnen	
können (Abi)	b) A = $a \cdot b \cdot \sin \gamma$, wobei a, b zwei Seitenlängen des
b) Fläche eines nicht rechtwinkligen Dreiecks	Dreiecks und γ der zwischen a und b eingeschlossene
berechnen können (248/2a, Abi)	Winkel ist
15. Lage innerhalb eines Dreiecks oder	a) ein Punkt P liegt innerhalb eines Dreiecks ABC,
Parallelogramms prüfen	wenn gilt: $\overrightarrow{AP} = r \cdot \overrightarrow{AB} + s \cdot \overrightarrow{AC}$ mit $r \ge 0$, $s \ge 0$ und
a) Lage innerhalb eines Dreiecks prüfen können	
b) Lage innerhalb eines Parallelogramms prüfen	r+s≤1
	b) ein Punkt P liegt innerhalb eines Parallelogramms
können (Arbeitsblatt Nr. 1, Abi)	ABDC, wenn gilt: $\overrightarrow{AP} = r \cdot \overrightarrow{AB} + s \cdot \overrightarrow{AC}$
	mit $0 \le r \le 1$ und $0 \le s \le 1$
16. Überprüfen, ob ein Rechteck überflogen wird	1. Berechnen, in welchem Bereich sich x ₁ und x ₂
z. B. Rechteck gegeben durch E:	innerhalb des Rechtecks bewegen, hier
(0)	$e+a \le x_1 \le e+b \text{ und } f+c \le x_2 \le f+d$
$\vec{x} = \begin{pmatrix} e \\ f \\ a \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} mit$	2. In der Geradengleichung $x_1 = e + a$ und
$ \langle g \rangle \langle 0 \rangle $	$x_1 = e + b$ einsetzen und jeweils x_2 berechnen
$a \le r \le b$ und $c \le s \le d$	3. Das Rechteck wird nicht überflogen, wenn beide
(Arbeitsblatt Nr. 2 und 223/5)	berechneten x ₂ -Werte gleichzeitig oberhalb oder
	gleichzeitig unterhalb des Rechteckes liegen.
47 Lineau Hashiyadalad	
17. Lineare Unabhängigkeit	Lösungen der Gleichung $r_1 \cdot \overrightarrow{a_1} + r_2 \cdot \overrightarrow{a_2} + + r_n \cdot \overrightarrow{a_n} = \overrightarrow{0}$
Lineare Unabhängigkeit von Vektoren $\overrightarrow{a_1}$, $\overrightarrow{a_2}$,, $\overrightarrow{a_n}$	bestimmen
überprüfen können (262/2b).	
Bei linear abhängigen Vektoren die Form der	
Linearkombination berechnen können.	