Kann-Liste Mathematik GK Wahrscheinlichkeits	rechnung (EF, 3. Quartal)
1. Zu einem zwei- oder dreistufigen Zufallsprozess ein Baumdiagramm aufstellen, dabei die Wahrscheinlichkeiten in der 1. und 2. Stufe sowie die Endwahrscheinlichkeiten berechnen können. S. 152 Nr. 1a-d , Nr. 2 a-d)	Pfadregel: Um eine Endwahrscheinlichkeit zu berechnen, werden die Wahrscheinlichkeiten entlang eines Pfades multipliziert. Summenregel: Um die Wahrscheinlichkeit eines Ereignisses zu berechnen, werden alle Endwahrscheinlichkeiten der Pfade, die zu dem Ereignis gehören addiert.
2. Zu einer gegebenen Häufigkeitsverteilung des Mittelwert berechnen können, z.B. Mittelwert der Augenzahl bei 50 Würfen mit einem Würfels mit 3 verschieden großen Seiten. S. 148 Nr. 2b	Augenzahl 1 2 3 4 5 6 Häufigkeit 16 2 7 7 4 14 Mittelwert = $\frac{1}{50}$ · (1 · 16 + 2 · 2 + 3 · 7 + 4 · 7 + 5 · 4 + 6 · 14) = 3,46
3. Eine Wahrschweinlichkeitsverteilung aus einem Baumdiagramm erstellen und zu einer gegebenen Wahrscheinlichkeitsverteilung den Erwartungswert für eine Zufallsgröße berechnen können. S. 152 Nr. 1e und 2e Achtung: eventuell muss die Zufallsgröße für jeden Wert erst berechnet werden (z. B. der dreifache Gewinn der Augenzahl in € heißt: Gewinn 6€ bei Augenzahl 2).	Augenzahl 1 2 3 4 5 6 Wahrscheinlichkeit $\frac{15}{50}$ $\frac{3}{10}$ $\frac{3}{50}$ $\frac{3}{50}$ $\frac{3}{10}$ $\frac{15}{50}$ Erwartungswert für die Augenzahl $\mu = 1 \cdot \frac{15}{50} + 2 \cdot \frac{3}{10} + 3 \cdot \frac{3}{50} + 4 \cdot \frac{3}{50} + 5 \cdot \frac{3}{10} + 6 \cdot \frac{15}{50} = \frac{213}{50} = 4,26$
4. Bedingte Wahrscheinlichkeiten $P(E)$ bzw. $P_F(E)$, Endwahrscheinlichkeiten $P(E \cap F)$ und Grundwahrscheinlichkeiten $P(E)$ bzw. $P(F)$ im zweistufigen $P(E \cap F)$ Baumdiagramm (1. Stufe E, 2. Stufe F) ablesen können S. 156 Nr. 3	$P(E)$ und $P(\overline{E})$ stehen in der 1. Stufe $P_E(F)$ steht in der zweiten Stufe, für $P_F(E)$, muss der Baum umgekehrt werden! $P(E \cap F)$ steht als Endwahrscheinlichkeit unter dem Baumdiagramm (in der letzten (3.) Stufe) $P(F)$ ergibt sich aus der Summe aller Endwahrscheinlichkeiten, die zum Ereignis F gehören
F. Bedingte Wahrscheinlichkeiten $P_E(F)$ bzw. $P_F(E)$, Endwahrscheinlichkeiten P (E \cap F) und Grundwahrscheinlichkeiten P(E) bzw. P(F) in der Vierfeldertafel ablesen können. S. 156 Nr. 7	P $(E \cap F)$, P $(\overline{E} \cap F)$, P $(E \cap \overline{F})$, P $(\overline{E} \cap \overline{F})$ sind die vier inneren Felder Vierfeldertafel (Endwahrscheinlichkeiten) $P(E)$, P (\overline{E}) , $P(F)$, P (\overline{F}) sind die Summenwahrscheinlichkeiten der Vierfeldertafel, Bedingte Wahrscheinlichkeiten werden mit der Pfadregel
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	bestimmt: $P(E) \cdot P_E(F) = P \ (E \cap F) \text{ergibt } P_E(F) = \frac{P \ (E \cap F)}{P(E)}$ $P(F) \cdot P_F(E) = P \ (E \cap F) \text{ergibt } P_F(E) = \frac{P \ (E \cap F)}{P(F)}$
6. Grundwahrscheinlichkeiten $P(E)$, $P(F)$ in einem dreistufigen Baumdiagramm ablesen können, daraus $P(E \cap F)$ oder bedingte Wahrscheinlichkeiten bestimmen können S. 155 Nr. 1	durch Auswertung mit der Pfadregel oder logische Schlussfolgerungen $P(E)$ oder $P(F)$, z. B. Welche Pfade führen zum Ereignis E oder F? P (E \cap F): Welche der Pfade erfüllen die Ereignisse E und F? $P_E(F)$ oder $P_F(E)$ bestimmen wie in den Formeln bei 5.
7. Ein Baumdiagramm umkehren können ursprüngliches Baumdiagramm mit Ereignis E in Stufe 1 und Ereignis F in Stufe 2	 Im Baum Stufe 1 (E) und Stufe 2 (F) vertauschen. Die Endwahrscheinlichkeiten an den richtigen Positionen übernehmen Die Wahrscheinlichkeit in der ersten Stufe (Ereignis F) neu
umgekehrtes Baumdiagramm mit Ereignis F in Stufe 1 und Ereignis E in Stufe 2 S. 156 Nr. 6	berechnen als Summe aller Endwahrscheinlichkeiten mit dem Ergebnis F 4. Die Wahrscheinlichkeiten in der zweiten Stufe (Ereignis E) als bedingte Wahrscheinlichkeiten neu berechnen mit $P_F(E) = \frac{P(E \cap F)}{P(F)} = \frac{p(Endstufe)}{p(1. Stufe)}$
8. Entscheiden können, ob zwei Ereignisse E und F unabhängig oder abhängig sind S. 160 Nr. 3a, b und Nr. 4d	im Baumdiagramm : E und F sind unabhängig, wenn $P(F) = P_E(F)$ in der Vierfeldertafel: E und F sind unabhängig, wenn $P(F, O, F) = P(F) \cdot P(F)$

9. Bruchrechnungen (wie z. B. in 3.) auch ohne

Taschenrechner durchführen können